We investigate the potential of neural-network based classifiers for discriminating gravitational wave bursts (GWBs) of a given canonical family (e.g. core-collapse supernova waveforms) from typical transient instrumental artifacts (glitches), in the data of a single detector. The further classification of glitches into typical sets is explored. In order to provide a proof of concept, we use the core-collapse supernova waveform catalog produced by H. Dimmelmeier and co-Workers, and the data base of glitches observed in laser interferometer gravitational wave observatory (LIGO) data maintained by P. Saulson and co-Workers to construct datasets of (windowed) transient waveforms (glitches and bursts) in additive (Gaussian and compound-Gaussian) noise with different signal-to-noise ratios (SNR). Principal component analysis (PCA) is next implemented for reducing data dimensionality, yielding results consistent with, and extending those in the literature. Then, a multilayer perceptron is trained by a backpropagation algorithm (MLP-BP) on a data subset, and used to classify the transients as glitch or burst. A Self-Organizing Map (SOM) architecture is finally used to classify the glitches. The glitch/burst discrimination and glitch classification abilities are gauged in terms of the related truth tables. Preliminary results suggest that the approach is effective and robust throughout the SNR range of practical interest. Perspective applications pertain both to distributed (network, multisensor) detection of GWBs, where some intelligence at the single node level can be introduced, and instrument diagnostics/optimization, where spurious transients can be identified, classified and hopefully traced back to their entry points.

Neural network aided glitch-burst discrimination and glitch classification

RAMPONE S;PIERRO V;TROIANO L;PINTO, Innocenzo
2013-01-01

Abstract

We investigate the potential of neural-network based classifiers for discriminating gravitational wave bursts (GWBs) of a given canonical family (e.g. core-collapse supernova waveforms) from typical transient instrumental artifacts (glitches), in the data of a single detector. The further classification of glitches into typical sets is explored. In order to provide a proof of concept, we use the core-collapse supernova waveform catalog produced by H. Dimmelmeier and co-Workers, and the data base of glitches observed in laser interferometer gravitational wave observatory (LIGO) data maintained by P. Saulson and co-Workers to construct datasets of (windowed) transient waveforms (glitches and bursts) in additive (Gaussian and compound-Gaussian) noise with different signal-to-noise ratios (SNR). Principal component analysis (PCA) is next implemented for reducing data dimensionality, yielding results consistent with, and extending those in the literature. Then, a multilayer perceptron is trained by a backpropagation algorithm (MLP-BP) on a data subset, and used to classify the transients as glitch or burst. A Self-Organizing Map (SOM) architecture is finally used to classify the glitches. The glitch/burst discrimination and glitch classification abilities are gauged in terms of the related truth tables. Preliminary results suggest that the approach is effective and robust throughout the SNR range of practical interest. Perspective applications pertain both to distributed (network, multisensor) detection of GWBs, where some intelligence at the single node level can be introduced, and instrument diagnostics/optimization, where spurious transients can be identified, classified and hopefully traced back to their entry points.
2013
Gravitational wave glitch; neural network classifiers
File in questo prodotto:
File Dimensione Formato  
rampone.pdf

non disponibili

Licenza: Non specificato
Dimensione 570.58 kB
Formato Adobe PDF
570.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/305
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact