The dynamic response of piles to seismic loading is explored by means of an extensive parametric study based on a properly calibrated Beam-on-Dynamic-Winkler-Foundation (BDWF) model. The investigated problem consists of a single vertical cylindrical pile, modelled as an Euler–Bernoulli beam, embedded in a subsoil consisting of two homogeneous viscoelastic layers of sharply different stiffness resting on a rigid stratum. The system is subjected to vertically propagating seismic S waves, in the form of a transient motion imposed on rock outcrop. Several accelerograms recorded in Italy are employed as input motions in the numerical analyses. The paper highlights the severity of kinematic pile bending in the vicinity of the interface separating the two soil layers. In addition to factors already investigated such as layer stiffness contrast, relative soil–pile stiffness, interface depth and intensity of ground excitation, the paper focuses on additional important factors, notably soil material damping, stiffness of Winkler springs and frequency content of earthquake excitation. Existing predictive equations for assessing kinematic pile bending at soil layer interfaces are revisited and new regression analyses are performed. A synthesis of findings in terms of a set of simple equations is provided. The use of these equations is discussed through examples.

Transient kinematic pile bending in two-layer soil

SICA S;SIMONELLI A
2011-01-01

Abstract

The dynamic response of piles to seismic loading is explored by means of an extensive parametric study based on a properly calibrated Beam-on-Dynamic-Winkler-Foundation (BDWF) model. The investigated problem consists of a single vertical cylindrical pile, modelled as an Euler–Bernoulli beam, embedded in a subsoil consisting of two homogeneous viscoelastic layers of sharply different stiffness resting on a rigid stratum. The system is subjected to vertically propagating seismic S waves, in the form of a transient motion imposed on rock outcrop. Several accelerograms recorded in Italy are employed as input motions in the numerical analyses. The paper highlights the severity of kinematic pile bending in the vicinity of the interface separating the two soil layers. In addition to factors already investigated such as layer stiffness contrast, relative soil–pile stiffness, interface depth and intensity of ground excitation, the paper focuses on additional important factors, notably soil material damping, stiffness of Winkler springs and frequency content of earthquake excitation. Existing predictive equations for assessing kinematic pile bending at soil layer interfaces are revisited and new regression analyses are performed. A synthesis of findings in terms of a set of simple equations is provided. The use of these equations is discussed through examples.
2011
Piles; Soil–structure interaction (SSI); Kinematic interaction; Numerical modelling
File in questo prodotto:
File Dimensione Formato  
Sica et al_SDEE 2011.pdf

non disponibili

Licenza: Non specificato
Dimensione 2.1 MB
Formato Adobe PDF
2.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/2839
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 63
social impact