We investigate the properties of edge-preserving smoothing in the context of Finite Markov Random Fields (FMRF). Our main result follows from the definition of discontinuity adaptive potential for FMRF which imposes to penalize linearly image gradients. This is in agreement with the Total Variation based regularization approach to image recovery and analysis. We also report a fast computational algorithm exploiting the finiteness of the field, it uses integer arithmetic and a gradient descent updating procedure. Numerical results on real images and comparisons with anisotropic diffusion and half-quadratic regularization are reported.
A Finite Markov Random Field Approach to Fast Edge Preserving Image Recovery
CECCARELLI M
2007-01-01
Abstract
We investigate the properties of edge-preserving smoothing in the context of Finite Markov Random Fields (FMRF). Our main result follows from the definition of discontinuity adaptive potential for FMRF which imposes to penalize linearly image gradients. This is in agreement with the Total Variation based regularization approach to image recovery and analysis. We also report a fast computational algorithm exploiting the finiteness of the field, it uses integer arithmetic and a gradient descent updating procedure. Numerical results on real images and comparisons with anisotropic diffusion and half-quadratic regularization are reported.File | Dimensione | Formato | |
---|---|---|---|
Image and Vision Computing 2007 Ceccarelli.pdf
non disponibili
Licenza:
Non specificato
Dimensione
2.33 MB
Formato
Adobe PDF
|
2.33 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.