We consider a waveguide modeled by the Laplacian in a straight planar strip. The Dirichlet boundary condition is taken on the upper boundary, while on the lower boundary we impose periodically alternating Dirichlet and Neumann condition assuming the period of alternation to be small. We study the case when the homogenization gives the Neumann condition instead of the alternating ones. We establish the uniform resolvent convergence and the estimates for the rate of convergence. It is shown that the rate of the convergence can be improved by employing a special boundary corrector. Other results are the uniform resolvent convergence for the operator on the cell of periodicity obtained by the Floquet-Bloch decomposition, the two terms asymptotics for the band functions, and the complete asymptotic expansion for the bottom of the spectrum with an exponentially small error term.
On a Waveguide with Frequently Alternating Boundary Conditions: Homogenized Neumann Condition
Cardone G.
2010-01-01
Abstract
We consider a waveguide modeled by the Laplacian in a straight planar strip. The Dirichlet boundary condition is taken on the upper boundary, while on the lower boundary we impose periodically alternating Dirichlet and Neumann condition assuming the period of alternation to be small. We study the case when the homogenization gives the Neumann condition instead of the alternating ones. We establish the uniform resolvent convergence and the estimates for the rate of convergence. It is shown that the rate of the convergence can be improved by employing a special boundary corrector. Other results are the uniform resolvent convergence for the operator on the cell of periodicity obtained by the Floquet-Bloch decomposition, the two terms asymptotics for the band functions, and the complete asymptotic expansion for the bottom of the spectrum with an exponentially small error term.File | Dimensione | Formato | |
---|---|---|---|
BorisovBunoiuCardoneAHP.pdf
non disponibili
Licenza:
Non specificato
Dimensione
492.87 kB
Formato
Adobe PDF
|
492.87 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.