Magnetostrictive and all multifunctional materials have experienced in the last decades a growing technological interest. Several contributions, in the literature, propose the above-mentioned materials in innovative sensors and actuators both for bulk and MEMS devices. More recently, magnetostrictive materials have been proposed for energy harvesting applications by exploiting the so-called Villari effect. In this case, the behavior and the amplitude of the piezo-magnetic coefficients are an important element to evaluate the conversion efficiency. Aim of this paper is to study the experimental behavior of the piezo-magnetic coefficients of a commercial Terfenol-D rod under controlled conditions. © 2011 Elsevier B.V. All rights reserved.
The piezo-magnetic parameters of Terfenol-D: An experimental viewpoint
Davino D;Visone C
2012-01-01
Abstract
Magnetostrictive and all multifunctional materials have experienced in the last decades a growing technological interest. Several contributions, in the literature, propose the above-mentioned materials in innovative sensors and actuators both for bulk and MEMS devices. More recently, magnetostrictive materials have been proposed for energy harvesting applications by exploiting the so-called Villari effect. In this case, the behavior and the amplitude of the piezo-magnetic coefficients are an important element to evaluate the conversion efficiency. Aim of this paper is to study the experimental behavior of the piezo-magnetic coefficients of a commercial Terfenol-D rod under controlled conditions. © 2011 Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.