The functional F(u) = integral(B) f(x, Du)dx is considered, where B is the unit ball in R-n, u varies in the set of the locally Lipschitz functions on R-n, and f belongs to a family of integrands containing, as model case, the following one f : (x, z) is an element of Rn x Rn --> \ < z, x > \/\x\(n) + \z\(p), 1 < p < n. The computation of the relaxed functional of F is provided. The formula obtained shows the persistence of the Lavrentieff Phenomenon. Examples of integrands not exhibiting the Lavrentieff Phenomenon are also presented, showing that this phenomenon is not linked only to the non standard growth behaviour of integrands.

Lavrentieff phenomenon and non standard growth conditions

Cardone G;
2001-01-01

Abstract

The functional F(u) = integral(B) f(x, Du)dx is considered, where B is the unit ball in R-n, u varies in the set of the locally Lipschitz functions on R-n, and f belongs to a family of integrands containing, as model case, the following one f : (x, z) is an element of Rn x Rn --> \ < z, x > \/\x\(n) + \z\(p), 1 < p < n. The computation of the relaxed functional of F is provided. The formula obtained shows the persistence of the Lavrentieff Phenomenon. Examples of integrands not exhibiting the Lavrentieff Phenomenon are also presented, showing that this phenomenon is not linked only to the non standard growth behaviour of integrands.
File in questo prodotto:
File Dimensione Formato  
CardoneDApiceDeMaioJConvAnal.pdf

non disponibili

Licenza: Non specificato
Dimensione 494.38 kB
Formato Adobe PDF
494.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/2482
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact