The functional F(u) = integral(B) f(x, Du)dx is considered, where B is the unit ball in R-n, u varies in the set of the locally Lipschitz functions on R-n, and f belongs to a family of integrands containing, as model case, the following one f : (x, z) is an element of Rn x Rn --> \ < z, x > \/\x\(n) + \z\(p), 1 < p < n. The computation of the relaxed functional of F is provided. The formula obtained shows the persistence of the Lavrentieff Phenomenon. Examples of integrands not exhibiting the Lavrentieff Phenomenon are also presented, showing that this phenomenon is not linked only to the non standard growth behaviour of integrands.
Lavrentieff phenomenon and non standard growth conditions
Cardone G;
2001-01-01
Abstract
The functional F(u) = integral(B) f(x, Du)dx is considered, where B is the unit ball in R-n, u varies in the set of the locally Lipschitz functions on R-n, and f belongs to a family of integrands containing, as model case, the following one f : (x, z) is an element of Rn x Rn --> \ < z, x > \/\x\(n) + \z\(p), 1 < p < n. The computation of the relaxed functional of F is provided. The formula obtained shows the persistence of the Lavrentieff Phenomenon. Examples of integrands not exhibiting the Lavrentieff Phenomenon are also presented, showing that this phenomenon is not linked only to the non standard growth behaviour of integrands.File | Dimensione | Formato | |
---|---|---|---|
CardoneDApiceDeMaioJConvAnal.pdf
non disponibili
Licenza:
Non specificato
Dimensione
494.38 kB
Formato
Adobe PDF
|
494.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.