In a three-dimensional solid with arbitrary periodic Lipschitz perforation the Korn inequality is proved with a constant independent of the perforation size. The convergence rate of homogenization as a function of the Sobolev-Slobodetskii smoothness of data is also estimated. We improve foregoing results in elasticity dropping customary restrictions on the shape of the periodicity cell and superfluous smoothness and smallness assumptions on the external forces and traction.

Korn's inequality for periodic solids and convergence rate of homogenization

Cardone G;
2009-01-01

Abstract

In a three-dimensional solid with arbitrary periodic Lipschitz perforation the Korn inequality is proved with a constant independent of the perforation size. The convergence rate of homogenization as a function of the Sobolev-Slobodetskii smoothness of data is also estimated. We improve foregoing results in elasticity dropping customary restrictions on the shape of the periodicity cell and superfluous smoothness and smallness assumptions on the external forces and traction.
File in questo prodotto:
File Dimensione Formato  
CardoneCorboNazarovApplAnal.pdf

non disponibili

Licenza: Non specificato
Dimensione 263.74 kB
Formato Adobe PDF
263.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/2467
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact