Abstract-Experiments on zeolitization were conducted on four synthetic monocationic glasses (Na, K, Ca, or Mg-rich glass) with Si/Al molar ratios of 2.67, similar in acidity to many volcanic glasses of partially zeolitized Italian tuffs. The products of the hydrothermal treatment at 100, 150, and 200°C of single glasses or glass mixtures with deionized H2O or monosaline solutions (NaCI, KC1, CaCl2) were characterized by X-ray diffraction, thermal, microscopic and chemical analyses. Chemical analyses of mother liquors were also performed. Mineral assemblages, containing chabazite, phillipsite, analcime, and K-feldspar, very similar to those found in altered, volcaniclastic alkali-trachytic or trachytic glass deposits were produced. Potassium was essential to chabazite and phillipsite crystallization, although phillipsite was obtained also in Ca-Na mixed systems. Sodium was necessary for analcime formation. Calcium plays only a secondary role in zeolitization, and magnesium does not favor zeolite crystallization but promotes the formation of smectite. Glass composition determines the mineral assemblages obtained and hence in those commonly found in nature.

Hydrothermal conversion of trachytic glass to zeolite. 3. Monocationic model glasses

LANGELLA A;
1999-01-01

Abstract

Abstract-Experiments on zeolitization were conducted on four synthetic monocationic glasses (Na, K, Ca, or Mg-rich glass) with Si/Al molar ratios of 2.67, similar in acidity to many volcanic glasses of partially zeolitized Italian tuffs. The products of the hydrothermal treatment at 100, 150, and 200°C of single glasses or glass mixtures with deionized H2O or monosaline solutions (NaCI, KC1, CaCl2) were characterized by X-ray diffraction, thermal, microscopic and chemical analyses. Chemical analyses of mother liquors were also performed. Mineral assemblages, containing chabazite, phillipsite, analcime, and K-feldspar, very similar to those found in altered, volcaniclastic alkali-trachytic or trachytic glass deposits were produced. Potassium was essential to chabazite and phillipsite crystallization, although phillipsite was obtained also in Ca-Na mixed systems. Sodium was necessary for analcime formation. Calcium plays only a secondary role in zeolitization, and magnesium does not favor zeolite crystallization but promotes the formation of smectite. Glass composition determines the mineral assemblages obtained and hence in those commonly found in nature.
1999
Analcime, Chabazite, Glass-to-zeolite conversion, Phillipsite, Synthesis, Trachytic glasses, Zeolite, synthesis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/2313
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact