Retinol-binding protein (RBP4) transports retinol in the circulation from hepatic stores to peripheral tissues. Since little is known regarding the regulation of this gene, we analysed the cis-regulatory sequences of the mouse RBP4 gene. Our data show that transcription of the gene is regulated through a bipartite promoter: a proximal region necessary for basal expression and a distal segment responsible for cAMP-induction. This latter region contains several binding sites for the structural HMGA1 proteins, which are important to promoter regulation. We further demonstrate that HMGA1s play a key role in basal and cAMP-induction of Rbp4 transcription and the RBP4 and HMGA1 genes are coordinately regulated in vitro and in vivo. HMGA1 acts to recruit transcription factors to the RBP4 promoter and we specifically identified p54nrb/NonO and protein-associated splicing factor (PSF) as components that interact with this complex. Steroidogenic factor 1 (SF1) or the related liver receptor homologue 1 (LRH-1) are also associated with this complex upon cAMP-induction. Depletion of SF1/LRH-1 by RNA interference resulted in a dramatic loss of cAMP-induction. Collectively, our results demonstrate that basal and cAMP-induced Rbp4 transcription is regulated by a multiprotein complex that is similar to ones that modulate expression of genes of steroid hormone biosynthesis. Since genes related to glucose metabolism are regulated in a similar fashion, this suggests that Rbp4 expression may be regulated as part of a network of pathways relevant to the onset of type 2 diabetes.
Transcriptional activity of the murine retinol binding protein gene is regulated by a multiprotein complex containing HMGA1, p54nrb/NonO, protein -associated splicing factor (PSF) and steroidogenic factor 1 (SF1) / liver receptor homologue1(LRH-1)
LUPO A;A SABATINO;AND COLANTUONI
2009-01-01
Abstract
Retinol-binding protein (RBP4) transports retinol in the circulation from hepatic stores to peripheral tissues. Since little is known regarding the regulation of this gene, we analysed the cis-regulatory sequences of the mouse RBP4 gene. Our data show that transcription of the gene is regulated through a bipartite promoter: a proximal region necessary for basal expression and a distal segment responsible for cAMP-induction. This latter region contains several binding sites for the structural HMGA1 proteins, which are important to promoter regulation. We further demonstrate that HMGA1s play a key role in basal and cAMP-induction of Rbp4 transcription and the RBP4 and HMGA1 genes are coordinately regulated in vitro and in vivo. HMGA1 acts to recruit transcription factors to the RBP4 promoter and we specifically identified p54nrb/NonO and protein-associated splicing factor (PSF) as components that interact with this complex. Steroidogenic factor 1 (SF1) or the related liver receptor homologue 1 (LRH-1) are also associated with this complex upon cAMP-induction. Depletion of SF1/LRH-1 by RNA interference resulted in a dramatic loss of cAMP-induction. Collectively, our results demonstrate that basal and cAMP-induced Rbp4 transcription is regulated by a multiprotein complex that is similar to ones that modulate expression of genes of steroid hormone biosynthesis. Since genes related to glucose metabolism are regulated in a similar fashion, this suggests that Rbp4 expression may be regulated as part of a network of pathways relevant to the onset of type 2 diabetes.File | Dimensione | Formato | |
---|---|---|---|
Transcriptionalactivity of RBP4gene....pdf
non disponibili
Licenza:
Non specificato
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.