The usefulness of measures for the analysis and design of object oriented (OO) software is increasingly being recognized in the field of software engineering research. In particular, recognition of the need for early indicators of external quality attributes is increasing. We investigate through experimentation whether a collection of UML class diagram measures could be good predictors of two main subcharacteristics of the maintainability of class diagrams: understandability and modifiability. Results obtained from a controlled experiment and a replica support the idea that useful prediction models for class diagrams understandability and modifiability can be built on the basis of early measures, in particular, measures that capture structural complexity through associations and generalizations. Moreover, these measures seem to be correlated with the subjective perception of the subjects about the complexity of the diagrams. This fact shows, to some extent, that the objective measures capture the same aspects as the subjective ones. However, despite our encouraging findings, further empirical studies, especially using data taken from real projects performed in industrial settings, are needed. Such further study will yield a comprehensive body of knowledge and experience about building prediction models for understandability and modifiability.
Building measure-based prediction models for UML class diagram maintainability
Visaggio CA;Canfora G;
2007-01-01
Abstract
The usefulness of measures for the analysis and design of object oriented (OO) software is increasingly being recognized in the field of software engineering research. In particular, recognition of the need for early indicators of external quality attributes is increasing. We investigate through experimentation whether a collection of UML class diagram measures could be good predictors of two main subcharacteristics of the maintainability of class diagrams: understandability and modifiability. Results obtained from a controlled experiment and a replica support the idea that useful prediction models for class diagrams understandability and modifiability can be built on the basis of early measures, in particular, measures that capture structural complexity through associations and generalizations. Moreover, these measures seem to be correlated with the subjective perception of the subjects about the complexity of the diagrams. This fact shows, to some extent, that the objective measures capture the same aspects as the subjective ones. However, despite our encouraging findings, further empirical studies, especially using data taken from real projects performed in industrial settings, are needed. Such further study will yield a comprehensive body of knowledge and experience about building prediction models for understandability and modifiability.File | Dimensione | Formato | |
---|---|---|---|
ESE-07-4.pdf
non disponibili
Licenza:
Non specificato
Dimensione
466.95 kB
Formato
Adobe PDF
|
466.95 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.