A network of connected catalytic reactors with periodically switched inlet and outlet sections is studied for reversible exothermic reactions. The methanol synthesis is selected as representative process example and two different switch strategies are compared with the objective of overcoming the conversion limits imposed by thermodynamic equilibrium. The first strategy, which is the most considered in literature, consists of periodically switching the feed to the second reactor of the current reactor sequence while the second strategy is implemented by periodically switching the feed to the last reactor of the current sequence. Periodic regimes corresponding to single square-like temperature waves travelling over the catalytic bed and characterized by comparable methanol conversion values are detected for both the considered strategies. These regimes exhibit, however, a significantly larger domain of existence for the second strategy. Moreover, the second strategy gives rise to other periodic regimes corresponding to spatiotemporal temperature patterns characterized by different spatial and temporal periodicity. These patterns arise in the form of temperature waves train and ensure methanol conversion values significantly larger than those found under periodic regimes characterized by single temperature waves.

Temperature and conversion patterns in a network of catalytic reactors for methanol synthesis with different switch strategies

Mancusi E
;
2010-01-01

Abstract

A network of connected catalytic reactors with periodically switched inlet and outlet sections is studied for reversible exothermic reactions. The methanol synthesis is selected as representative process example and two different switch strategies are compared with the objective of overcoming the conversion limits imposed by thermodynamic equilibrium. The first strategy, which is the most considered in literature, consists of periodically switching the feed to the second reactor of the current reactor sequence while the second strategy is implemented by periodically switching the feed to the last reactor of the current sequence. Periodic regimes corresponding to single square-like temperature waves travelling over the catalytic bed and characterized by comparable methanol conversion values are detected for both the considered strategies. These regimes exhibit, however, a significantly larger domain of existence for the second strategy. Moreover, the second strategy gives rise to other periodic regimes corresponding to spatiotemporal temperature patterns characterized by different spatial and temporal periodicity. These patterns arise in the form of temperature waves train and ensure methanol conversion values significantly larger than those found under periodic regimes characterized by single temperature waves.
2010
Loop reactor; Process intesification; pattern formation
File in questo prodotto:
File Dimensione Formato  
CHEMICAL ENG SCI.pdf

non disponibili

Licenza: Non specificato
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/1699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact