Following the April 6th, 2009 Abruzzo mainshock, the Italian Civil Protection Department promoted a multidisciplinary study aimed at developing seismic microzonation maps for post-earthquake reconstruction planning. In the framework of this project, a Working Group, including the authors, was assembled to carry out a microzonation study on six villages located in the Middle Aterno valley. This paper focuses on the villages of Castelnuovo and Poggio Picenze, which experienced MCS intensity values of IX–X and VIII–IX, respectively. 1D and 2D linear equivalent site response analyses were carried out on representative geological cross-sections through the damaged centres and the expansion zones. The subsoil models resulting from geological, geotechnical and geophysical investigations were calibrated by comparing numerical amplification functions, in the linear range, with horizontal-to-vertical spectral ratio derived from both aftershocks and noise recordings. The input motions adopted for the analyses were five artificial accelerograms compatible with three response spectra obtained from the Italian seismic code, as well as from ad hoc probabilistic and deterministic studies. The results were expressed in the form of horizontal profiles of amplification factors in terms of peak ground acceleration, FPGA, as well as of the Housner intensity, FH, in two different range of periods; this latter parameterwas shown to be almost independent of the input motion and allowed to express the dependency of site amplification on the frequency range. The amplification factors computed along the representative geological sections were finally extended with a rational procedure to the surrounding areas to draw Grade-3 microzonation maps.

Site response studies and seismic microzoning in the Middle Aterno Valley (L'Aquila, Central Italy)

SICA S;SIMONELLI A
2011-01-01

Abstract

Following the April 6th, 2009 Abruzzo mainshock, the Italian Civil Protection Department promoted a multidisciplinary study aimed at developing seismic microzonation maps for post-earthquake reconstruction planning. In the framework of this project, a Working Group, including the authors, was assembled to carry out a microzonation study on six villages located in the Middle Aterno valley. This paper focuses on the villages of Castelnuovo and Poggio Picenze, which experienced MCS intensity values of IX–X and VIII–IX, respectively. 1D and 2D linear equivalent site response analyses were carried out on representative geological cross-sections through the damaged centres and the expansion zones. The subsoil models resulting from geological, geotechnical and geophysical investigations were calibrated by comparing numerical amplification functions, in the linear range, with horizontal-to-vertical spectral ratio derived from both aftershocks and noise recordings. The input motions adopted for the analyses were five artificial accelerograms compatible with three response spectra obtained from the Italian seismic code, as well as from ad hoc probabilistic and deterministic studies. The results were expressed in the form of horizontal profiles of amplification factors in terms of peak ground acceleration, FPGA, as well as of the Housner intensity, FH, in two different range of periods; this latter parameterwas shown to be almost independent of the input motion and allowed to express the dependency of site amplification on the frequency range. The amplification factors computed along the representative geological sections were finally extended with a rational procedure to the surrounding areas to draw Grade-3 microzonation maps.
2011
Aterno River valley; Soil amplification; Dynamic properties
File in questo prodotto:
File Dimensione Formato  
Lanzo et al_BEE 2011.pdf

non disponibili

Licenza: Non specificato
Dimensione 3.84 MB
Formato Adobe PDF
3.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/1582
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 60
social impact