In this paper the dynamics of a periodically forced network of three catalytic reactors is studied. The reactors are modeled as distributed parameter systems with a Z3S1 spatiotemporal symmetry. The symmetry property is induced by periodical forcing, and it forces the Poincaré map to be the third iterate of another nonstroboscopic map. This property is used to compute the bifurcation diagram of the periodic and multiperiodic regimes of the reactor network through the continuation of the corresponding fixed points of the nonstroboscopic map. Moreover, this property is used to determine the symmetry and multiplicity of the regimes by comparing the invariant sets of the Poincarè map with those of the nonstroboscopic map. As demonstrated in this paper, this is possible even for quasi-periodic and chaotic regime. For symmetry and spatially distributed nature of the system, several complex symmetric and asymmetric spatiotemporal patterns corresponding to multiperiodic, quasi-periodic and chaotic regimes are found in a wide range of the bifurcation parameter. Symmetry breaking bifurcations, catastrophic transitions from periodic to quasi-periodic regimes, and different routes to chaotic regimes (Curry-Yorke, type I and III intermittencies and torus doubling cascade) are found and discussed.

Complex dynamics and spatio-temporal patterns in a network of three distributed chemical reactors with periodical feed switching

Mancusi E
;
2006-01-01

Abstract

In this paper the dynamics of a periodically forced network of three catalytic reactors is studied. The reactors are modeled as distributed parameter systems with a Z3S1 spatiotemporal symmetry. The symmetry property is induced by periodical forcing, and it forces the Poincaré map to be the third iterate of another nonstroboscopic map. This property is used to compute the bifurcation diagram of the periodic and multiperiodic regimes of the reactor network through the continuation of the corresponding fixed points of the nonstroboscopic map. Moreover, this property is used to determine the symmetry and multiplicity of the regimes by comparing the invariant sets of the Poincarè map with those of the nonstroboscopic map. As demonstrated in this paper, this is possible even for quasi-periodic and chaotic regime. For symmetry and spatially distributed nature of the system, several complex symmetric and asymmetric spatiotemporal patterns corresponding to multiperiodic, quasi-periodic and chaotic regimes are found in a wide range of the bifurcation parameter. Symmetry breaking bifurcations, catastrophic transitions from periodic to quasi-periodic regimes, and different routes to chaotic regimes (Curry-Yorke, type I and III intermittencies and torus doubling cascade) are found and discussed.
2006
Periodical feed switching; Chemical reactors; Non-stroboscopic map; Chaos theory; Distributed computer systems; Iterative methods
File in questo prodotto:
File Dimensione Formato  
Choas Sol Frac.pdf

non disponibili

Licenza: Non specificato
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/1554
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact