In this letter, we present a novel structure for light amplitude modulation based on a lateral p-i-n diode combined with a Bragg reflector which transforms the phase shift induced by the plasma dispersion effect in the intrinsic region of the diode into a voltage controlled variation of the reflectivity of the Bragg mirror. Numerical simulations show a modulation depth of 50% achieved in about 12 ns with a power dissipation of 4.0 mW and an insertion loss of 1.0 dB. The device is demonstrated to be very attractive in terms of power dissipation as compared to a Mach-Zehnder interferometer occupying the same area on chip. (C) 1997 American Institute of Physics.

An electrically controlled Bragg reflector integrated in a rib silicon on insulator waveguide

Cutolo A;
1997-01-01

Abstract

In this letter, we present a novel structure for light amplitude modulation based on a lateral p-i-n diode combined with a Bragg reflector which transforms the phase shift induced by the plasma dispersion effect in the intrinsic region of the diode into a voltage controlled variation of the reflectivity of the Bragg mirror. Numerical simulations show a modulation depth of 50% achieved in about 12 ns with a power dissipation of 4.0 mW and an insertion loss of 1.0 dB. The device is demonstrated to be very attractive in terms of power dissipation as compared to a Mach-Zehnder interferometer occupying the same area on chip. (C) 1997 American Institute of Physics.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/1405
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 49
social impact