The dynamic behaviour of cantilever retaining walls under earthquake action is explored by means of 1-g shaking table testing, carried out on scaled models at the Bristol Laboratory for Advanced Dynamics Engineering (BLADE), University of Bristol, UK. The experimental program encompasses different combinations of retaining wall geometries, soil configurations and input ground motions. The response analysis of the systems at hand aimed at shedding light onto the salient features of the problem, such as: (1) the magnitude of the soil thrust and its point of application; (2) the relative sliding as opposed to rocking of the wall base and the corresponding failure mode; (3) the importance/interplay between soil stiffness, wall dimensions, and excitation characteristics, as affecting the above. The results of the experimental investigations were in good agreement with the theoretical models used for the analysis and are expected to be useful for the better understanding and the optimization of earthquake design of this particular type of retaining structure.

Experimental Investigation of Dynamic Behaviour of Cantilever Retaining Walls

Simonelli A;
2012-01-01

Abstract

The dynamic behaviour of cantilever retaining walls under earthquake action is explored by means of 1-g shaking table testing, carried out on scaled models at the Bristol Laboratory for Advanced Dynamics Engineering (BLADE), University of Bristol, UK. The experimental program encompasses different combinations of retaining wall geometries, soil configurations and input ground motions. The response analysis of the systems at hand aimed at shedding light onto the salient features of the problem, such as: (1) the magnitude of the soil thrust and its point of application; (2) the relative sliding as opposed to rocking of the wall base and the corresponding failure mode; (3) the importance/interplay between soil stiffness, wall dimensions, and excitation characteristics, as affecting the above. The results of the experimental investigations were in good agreement with the theoretical models used for the analysis and are expected to be useful for the better understanding and the optimization of earthquake design of this particular type of retaining structure.
2012
Cantilever retaining walls; Earthquake design; Dynamic earth pressures; Shaking table testing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/13604
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact