The current advanced numerical codes for the energy audits carry out 0-dimensional simulation (i.e., one computational node representing the thermal zone), underestimating the effects of thermal bridges on the seasonal heating demand of buildings. The paper suggests a numerical resolution model, implemented in Matlab, aimed to be transferred in numerical engines for the hourly energy simulation. The proposed methodology solves common thermal bridges in buildings, evaluating their effects on the energy demand. Typical thermal bridges have been studied and implemented, analyzing the reliability of the methodology, in terms of accuracy, computational time, required sources, comparing the solutions with those derived by computational fluid dynamic codes. The method reveals very satisfactory results, both as regards the computational time and CPU sources required, as well as with reference to the reliability. Moreover, the solution stability is commonly very high, regardless the chosen computational time-step.

Transient heat transfer through walls and thermal bridges. Numerical modeling: methodology and validation

DE ROSSI F;
2012

Abstract

The current advanced numerical codes for the energy audits carry out 0-dimensional simulation (i.e., one computational node representing the thermal zone), underestimating the effects of thermal bridges on the seasonal heating demand of buildings. The paper suggests a numerical resolution model, implemented in Matlab, aimed to be transferred in numerical engines for the hourly energy simulation. The proposed methodology solves common thermal bridges in buildings, evaluating their effects on the energy demand. Typical thermal bridges have been studied and implemented, analyzing the reliability of the methodology, in terms of accuracy, computational time, required sources, comparing the solutions with those derived by computational fluid dynamic codes. The method reveals very satisfactory results, both as regards the computational time and CPU sources required, as well as with reference to the reliability. Moreover, the solution stability is commonly very high, regardless the chosen computational time-step.
978-1-4673-4781-5
File in questo prodotto:
File Dimensione Formato  
Proceedings wsc 2012.pdf

non disponibili

Licenza: Non specificato
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12070/13462
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 0
social impact