Neurotrophin-4 (NT-4) is a member of the well-known family of neurotrophins that regulate the development of neuronal networks by participating in neuronal survival and differentiation, the growth of neuronal processes, synaptic development and plasticity, as well as myelination. NT-4 interacts with two distinct receptors: TrkB, high affinity receptor and p75 low-affinity neurotrophin receptor (p75NTR). In the present survey, we identified the gene encoding NT-4 in the teleost Nothobranchius furzeri, a model species for aging research. The identified gene shows a similarity of about 72% with medaka, the closest related species. The neuroanatomical localization of NT-4 mRNA is obtained by using an LNA probe. NT-4 mRNA expression is observed in neurons and glial cells of the forebrain and hindbrain, with very low signal found in the midbrain. This survey confirms that NT-4 is expressed in the brain of N. furzeri during adulthood, suggesting that it could also be implicated in the maintenance and regulation of neuronal functions.
Neurotrophin-4 in the brain of adult Nothobranchius furzeri
Paolucci M;Varricchio E;
2016-01-01
Abstract
Neurotrophin-4 (NT-4) is a member of the well-known family of neurotrophins that regulate the development of neuronal networks by participating in neuronal survival and differentiation, the growth of neuronal processes, synaptic development and plasticity, as well as myelination. NT-4 interacts with two distinct receptors: TrkB, high affinity receptor and p75 low-affinity neurotrophin receptor (p75NTR). In the present survey, we identified the gene encoding NT-4 in the teleost Nothobranchius furzeri, a model species for aging research. The identified gene shows a similarity of about 72% with medaka, the closest related species. The neuroanatomical localization of NT-4 mRNA is obtained by using an LNA probe. NT-4 mRNA expression is observed in neurons and glial cells of the forebrain and hindbrain, with very low signal found in the midbrain. This survey confirms that NT-4 is expressed in the brain of N. furzeri during adulthood, suggesting that it could also be implicated in the maintenance and regulation of neuronal functions.File | Dimensione | Formato | |
---|---|---|---|
2016 Annals of Anatomy.pdf
non disponibili
Licenza:
Non specificato
Dimensione
2.1 MB
Formato
Adobe PDF
|
2.1 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.