FADD protein is a critical mediator of signal transduction pathways activated by several members of the TNF-receptor gene superfamily. Recently, an induced proximity model has been proposed to interpret FADD-mediated signaling events. According to this model, FADD facilitates signaling by inducing clusters of effector molecules in proximity of the activated receptor complex. An important corollary of the induced-proximity model is that FADD protein should not form oligomers in the absence of receptor stimulation. Here we show that, in the absence of death receptor stimulation, FADD is found associated to the alpha chain of the nascent polypeptide-associated complex (NAC). Exposure to TNF results in disruption of FADD/NAC complex. Expression of NAC regulates formation of FADD oligomers and modulates FADD-mediated signaling. Thus, our observation indicates that NAC may serve as an intracellular regulator of FADD function. (C) 2003 Elsevier Science (USA). All rights reserved.

The a-chain of the nascent polypeptide-associated complex binds to and regulates FADD function

Stilo R;Vito P.
2003-01-01

Abstract

FADD protein is a critical mediator of signal transduction pathways activated by several members of the TNF-receptor gene superfamily. Recently, an induced proximity model has been proposed to interpret FADD-mediated signaling events. According to this model, FADD facilitates signaling by inducing clusters of effector molecules in proximity of the activated receptor complex. An important corollary of the induced-proximity model is that FADD protein should not form oligomers in the absence of receptor stimulation. Here we show that, in the absence of death receptor stimulation, FADD is found associated to the alpha chain of the nascent polypeptide-associated complex (NAC). Exposure to TNF results in disruption of FADD/NAC complex. Expression of NAC regulates formation of FADD oligomers and modulates FADD-mediated signaling. Thus, our observation indicates that NAC may serve as an intracellular regulator of FADD function. (C) 2003 Elsevier Science (USA). All rights reserved.
File in questo prodotto:
File Dimensione Formato  
stilo 03.pdf

non disponibili

Licenza: Non specificato
Dimensione 228.99 kB
Formato Adobe PDF
228.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/1012
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact