Deep brain stimulation (DBS) is a highly promising therapy for Parkinson's disease (PD). However, most patients do not get full therapeutic benefit from DBS, due to its critical dependence on electrode location in the Subthalamic Nucleus (STN). For this reason, we believe that the development of a novel surgical tool for DBS placement, i.e., an automated intraoperative closed-loop DBS localization system, is essential. In this paper, we analyze single unit spiking activity of 120 neurons in different STN locations collected from 4 PD patients. Specifically, for each neuron, we estimate a point process model (PPM) of the spiking activity for different depths within the STN by which we are able to detect pathological bursting and oscillations. Our results suggest that these signatures are more prominent in the dorsolateral part of the STN. Therefore, accurately placing the DBS electrode in this target may result in maximal therapeutic benefit with less power effort required by DBS. Furthermore, PPMs might be an effective tool for modeling of the STN neuronal activities as a function of location within the STN, which may pave the way towards developing a closed-loop navigation tool for optimal DBS electrode placement.
Point process modeling reveals anatomical non-uniform distribution across the Subthalamic Nucleus in Parkinson's disease
Fiengo G;Glielmo L;
2012-01-01
Abstract
Deep brain stimulation (DBS) is a highly promising therapy for Parkinson's disease (PD). However, most patients do not get full therapeutic benefit from DBS, due to its critical dependence on electrode location in the Subthalamic Nucleus (STN). For this reason, we believe that the development of a novel surgical tool for DBS placement, i.e., an automated intraoperative closed-loop DBS localization system, is essential. In this paper, we analyze single unit spiking activity of 120 neurons in different STN locations collected from 4 PD patients. Specifically, for each neuron, we estimate a point process model (PPM) of the spiking activity for different depths within the STN by which we are able to detect pathological bursting and oscillations. Our results suggest that these signatures are more prominent in the dorsolateral part of the STN. Therefore, accurately placing the DBS electrode in this target may result in maximal therapeutic benefit with less power effort required by DBS. Furthermore, PPMs might be an effective tool for modeling of the STN neuronal activities as a function of location within the STN, which may pave the way towards developing a closed-loop navigation tool for optimal DBS electrode placement.File | Dimensione | Formato | |
---|---|---|---|
EMBC2012_pbs.pdf
non disponibili
Licenza:
Non specificato
Dimensione
649.54 kB
Formato
Adobe PDF
|
649.54 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.