Solar Heating and Cooling systems are a virtuous alternative to conventional air conditioning plants, as a renewable energy source (solar energy) is exploited. In this paper the coupling of low temperature solar devices with an innovative desiccant-based air handling unit, which meets the sensible and latent loads of a simulated lecture room, is analyzed through TRNSYS dynamic simulation software. The components have been characterized by means of experimental tests carried out at the test facility of Universita degli Studi del Sannio. The desiccant-based air handling unit current set-up allows summer operation only. However, heating operation is also simulated, as comfort conditions can be maintained in the conditioned space exploiting solar thermal energy also in winter, with some modifications to the air handling unit. A parametric analysis is performed to compare different technical solutions (collector types, surface, tilt angle) and to identify the optimal one, taking into account energy, economic and environmental performance with respect to a reference system.

THERMO-ECONOMIC ANALYSIS OF A SOLAR HEATING AND COOLING SYSTEM WITH DESICCANT-BASED AIR HANDLING UNIT BY MEANS OF DYNAMIC SIMULATIONS

Angrisani G;Roselli C;Sasso M;Tariello F
2014-01-01

Abstract

Solar Heating and Cooling systems are a virtuous alternative to conventional air conditioning plants, as a renewable energy source (solar energy) is exploited. In this paper the coupling of low temperature solar devices with an innovative desiccant-based air handling unit, which meets the sensible and latent loads of a simulated lecture room, is analyzed through TRNSYS dynamic simulation software. The components have been characterized by means of experimental tests carried out at the test facility of Universita degli Studi del Sannio. The desiccant-based air handling unit current set-up allows summer operation only. However, heating operation is also simulated, as comfort conditions can be maintained in the conditioned space exploiting solar thermal energy also in winter, with some modifications to the air handling unit. A parametric analysis is performed to compare different technical solutions (collector types, surface, tilt angle) and to identify the optimal one, taking into account energy, economic and environmental performance with respect to a reference system.
2014
978-0-7918-4584-4
File in questo prodotto:
File Dimensione Formato  
ESDA2014-20312.pdf

non disponibili

Licenza: Non specificato
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12070/10004
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact