CATILLO, Marta

CATILLO, Marta  

DIPARTIMENTO DI INGEGNERIA  

Mostra records
Risultati 1 - 20 di 27 (tempo di esecuzione: 0.038 secondi).
Titolo Data di pubblicazione Autore(i) File
2L-ZED-IDS: A Two-Level Anomaly Detector for Multiple Attack Classes 1-gen-2020 Catillo, M.; Rak, M.; Villano, U.
A case study on the representativeness of public DoS network traffic data for cybersecurity research 1-gen-2020 Catillo, M.; Pecchia, A.; Rak, M.; Villano, U.
A Case Study with CICIDS2017 on the Robustness of Machine Learning against Adversarial Attacks in Intrusion Detection 1-gen-2023 Catillo, M.; Del Vecchio, A.; Pecchia, A.; Villano, U.
A Critique on the Use of Machine Learning on Public Datasets for Intrusion Detection 1-gen-2021 Catillo, M.; Del Vecchio, A.; Pecchia, A.; Villano, U.
A Deep Learning Method for Lightweight and Cross-Device IoT Botnet Detection 1-gen-2023 Catillo, M; Pecchia, A; Villano, U
A survey on auto-scaling: how to exploit cloud elasticity 1-gen-2023 Catillo, M; Villano, U; Rak, M
Auto-scaling Applications in the Cloud by Simple Indexes with Complex Loads 1-gen-2020 Catillo, Marta; Ocone, Luciano; Rak, Massimiliano; Villano, Umberto
Auto-scaling in the Cloud: Current Status and Perspectives 1-gen-2020 Catillo, M.; Rak, M.; Villano, U.
AutoLog: Anomaly detection by deep autoencoding of system logs 1-gen-2022 Catillo, M.; Pecchia, A.; Villano, U.
Black-box load testing to support auto-scaling web applications in the cloud 1-gen-2021 Catillo, M.; Ocone, L.; Villano, U.; Rak, M.
Botnet Detection in the Internet of Things through All-in-one Deep Autoencoding 1-gen-2022 Catillo, M.; Pecchia, A.; Villano, U.
CPS-GUARD: Intrusion detection for cyber-physical systems and IoT devices using outlier-aware deep autoencoders 1-gen-2023 Catillo, M.; Pecchia, A.; Villano, U.
DEFEDGE: Threat-Driven Security Testing and Proactive Defense Identification for Edge-Cloud Systems 1-gen-2024 Casola, Valentina; Catillo, Marta; De Benedictis, Alessandra; Moretta, Felice; Pecchia, Antonio; Rak, Massimiliano; Villano, Umberto
Demystifying the role of public intrusion datasets: A replication study of DoS network traffic data 1-gen-2021 Catillo, M.; Pecchia, A.; Rak, M.; Villano, U.
Discovery of DoS attacks by the ZED-IDS anomaly detector 1-gen-2019 Catillo, M.; Rak, M.; Villano, U.
Exploring the effect of training-time randomness on the performance of deep neural networks for intrusion detection 1-gen-2024 Catillo, Marta; Pecchia, Antonio; Villano, Umberto
Machine Learning on Public Intrusion Datasets: Academic Hype or Concrete Advances in NIDS? 1-gen-2023 Catillo, Marta; Pecchia, Antonio; Villano, Umberto
Measurement-Based Analysis of a DoS Defense Module for an Open Source Web Server 1-gen-2020 Catillo, M.; Pecchia, A.; Villano, U.
No more DoS? An empirical study on defense techniques for web server Denial of Service mitigation 1-gen-2022 Catillo, M.; Pecchia, A.; Villano, U.
On the Quality of Network Flow Records for IDS Evaluation: A Collaborative Filtering Approach 1-gen-2022 Catillo, Marta; Del Vecchio, Andrea; Pecchia, Antonio; Villano, Umberto